2,000 research outputs found

    Subclinical psychopathy, interpersonal workplace exchanges and moral emotions through the lens of affective events theory (AET)

    Get PDF
    The purpose of this paper is to better comprehend the subclinical psychopath’s intra and interpersonal moral emotions in the context of their natural habitat, the workplace alongside implications for employees and organisations. This study draws on Affective Events Theory (AET) to illuminate this dark-side phenomenon. Thematic analysis is used to identify themes from qualitative data collected from a small sample of interviews conducted with HRM Directors and other managers The findings show that the subclinical psychopath is agentic being unfettered by intra, self-directed conscious moral emotions. The predominant moral emotion directed at employees during interpersonal workplace exchanges, is typically anger. However, it appears likely the subclinical psychopath fakes this moral emotion as a smokescreen for manipulative and exploitative gains The predominant moral emotion directed by employees towards the subclinical psychopath is fear. Employees resort to avoidance and withdrawal behaviour and intentions to quit become a reality. This has pernicious implications for organisations in terms of productivity and effectiveness. Notwithstanding the difficulties associated with this type of research and participants, future empirical testing is required. HRM has an important role to play. The signalling quality of employees’ moral emotions and subsequent dysfunctional avoidance and withdrawal behaviour can provide valuable information to HRM in the detection of subclincial psychopaths which is acknowledged as notoriously difficult. This study makes an important contribution to scholarship on subclincal psychopathy and makes novel use of Affective Events Theory (AET) to explore this personality type as a driver of employees’ negative workplace emotions, the impact on employees’ behaviour alongside implications for organisational effectiveness

    Contextual organismality: Beyond pattern to process in the emergence of organisms

    Get PDF
    Biologists have taken the concept of organism largely for granted. However, advances in the study of chimerism, symbiosis, bacterial-eukaryote associations, and microbial behavior have prompted a redefinition of organisms as biological entities exhibiting low conflict and high cooperation among their parts. This expanded view identifies organisms in evolutionary time. However, the ecological processes, mechanisms, and traits that drive the formation of organisms remain poorly understood. Recognizing that organismality can be context dependent, we advocate elucidating the ecological contexts under which entities do or do not act as organisms. Here we develop a "contextual organismality" framework and provide examples of entities, such as honey bee colonies, tumors, and bacterial swarms, that can act as organisms under specific life history, resource, or other ecological circumstances. We suggest that context dependence may be a stepping stone to the development of increased organismal unification, as the most integrated biological entities generally show little context dependence. Recognizing that organismality is contextual can identify common patterns and testable hypotheses across different entities. The contextual organismality framework can illuminate timeless as well as pressing issues in biology, including topics as disparate as cancer emergence, genomic conflict, evolution of symbiosis, and the role of the microbiota in impacting host phenotype.John Templeton FoundationVersion of record online: 27 October 2016; published open access.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    SIMPle Dark Matter: Self-Interactions and keV Lines

    Full text link
    We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass mXm_X and hidden glueballs with mass near the confinement scale Λ\Lambda. For mX1TeVm_X \sim 1\,\text{TeV} and Λ100MeV\Lambda \sim 100\,\text{MeV}, the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order Λ2/mX10keV\Lambda^2 / m_X \sim 10\,\text{keV}. We show that the radiative decays of the excited state can explain the observed 3.5 keV X-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.Comment: v1: 6 pages, 2 figures; v2: added references, published version; v3: note adde

    Physical activity and play behaviours in children and young people with intellectual disabilities: A cross-sectional observational study

    Get PDF
    The benefits of physical activity and active play for children and young people are well established. However, there is a lack of physical activity research involving children and young people with intellectual disabilities. This study investigated habitual physical activity and recess play behaviour in 70 5- to 15-year-old participants with intellectual disabilities using objective methods (accelerometers) and systematic observation techniques. Results showed that few children were active enough to benefit their physical health (23% of the cohort). No differences in habitual physical activity, sedentary behaviour, or recess play behaviours were observed between boys and girls. Participants spent most of their recess time alone or playing in small groups, with no participants engaging in large group play. Older participants spent more recess time playing in small groups rather than playing alone and participants with Autistic Spectrum Disorder spent more time engaged in active pursuits and less time standing than non-Autism Spectrum Disorder participants. Positive correlations were observed between time spent alone and physical activity. These findings contrast with those typically observed in a mainstream school setting. In conclusion, interventions designed from formative research are needed to promote physical activity within this population. Implications for school psychologists are discussed

    Oct4/Sox2 binding sites contribute to maintaining hypomethylation of the maternal Igf2/H19 imprinting control region

    Get PDF
    A central question in genomic imprinting is how parental-specific DNA methylation of imprinting control regions (ICR) is established during gametogenesis and maintained after fertilization. At the imprinted Igf2/H19 locus, CTCF binding maintains the unmethylated state of the maternal ICR after the blastocyst stage. In addition, evidence from Beckwith-Wiedemann patients and cultured mouse cells suggests that two Sox-Oct binding motifs within the Igf2/H19 ICR also participate in maintaining hypomethylation of the maternal allele. We found that the Sox and octamer elements from both Sox-Oct motifs were required to drive hypomethylation of integrated transgenes in mouse embryonic carcinoma cells. Oct4 and Sox2 showed cooperative binding to the Sox-Oct motifs, and both were present at the endogenous ICR. Using a mouse with mutations in the Oct4 binding sites, we found that maternally transmitted mutant ICRs acquired partial methylation in somatic tissues, but there was little effect on imprinted expression of H19 and Igf2. A subset of mature oocytes also showed partial methylation of the mutant ICR, which suggested that the Sox-Oct motifs provide some protection from methylation during oogenesis. The Sox-Oct motifs, however, were not required for erasure of paternal methylation in primordial germ cells, which indicated that the oocyte methylation was acquired post-natally. Maternally inherited mutant ICRs were unmethylated in blastocysts, which suggested that at least a portion of the methylation in somatic tissues occurred after implantation. These findings provide evidence that Sox-Oct motifs contribute to ICR hypomethylation in post-implantation embryos and maturing oocytes and link imprinted DNA methylation with key stem cell/germline transcription factors

    Robustness Of Baryon Acoustic Oscillation Constraints For Early-Universe Modifications Of ΛCDM Cosmology

    Get PDF
    Baryon acoustic oscillations (BAO) provide a robust standard ruler and can be used to constrain the expansion history of the Universe at low redshift. Standard BAO analyses return a model-independent measurement of the expansion rate and the comoving angular diameter distance as a function of redshift, normalized by the sound horizon at radiation drag. However, this methodology relies on anisotropic distance distortions of a fixed, precomputed template (obtained in a given fiducial cosmology) in order to fit the observations. Therefore, it may be possible that extensions to the consensus ΛCDM add contributions to the BAO feature that cannot be captured by the template fitting. We perform mock BAO fits to power spectra computed assuming cosmological models that modify the growth of perturbations prior to recombination in order to test the robustness of the standard BAO analysis. We find no significant bias in the BAO analysis for the models under study (ΛCDM with a free effective number of relativistic species, early dark energy, and a model with interactions between neutrinos and a fraction of the dark matter), even for cases that do not provide a good fit to Planck measurements of the cosmic microwave background power spectra. This result supports the use of the standard BAO analysis and its measurements to perform cosmological parameter inference and to constrain exotic models. In addition, we provide a methodology to reproduce our study for different models and surveys, as well as discuss different options to handle eventual biases in the BAO measurements

    Decomposition of coarse woody debris in a long-term litter manipulation experiment: A focus on nutrient availability

    Get PDF
    The majority of above-ground carbon in tropical forests is stored in wood, which is returned to the atmosphere during decomposition of coarse woody debris. However, the factors controlling wood decomposition have not been experimentally manipulated over time scales comparable to the length of this process.We hypothesized that wood decomposition is limited by nutrient availability and tested this hypothesis in a long-term litter addition and removal experiment in a lowland tropical forest in Panama. Specifically, we quantified decomposition using a 15-year chronosequence of decaying boles, and measured respiration rates and nutrient limitation of wood decomposer communities.The long-term probability that a dead tree completely decomposed was decreased in plots where litter was removed, but did not differ between litter addition and control treatments. Similarly, respiration rates of wood decomposer communities were greater in control treatments relative to litter removal plots; litter addition treatments did not differ from either of the other treatments. Respiration rates increased in response to nutrient addition (nitrogen, phosphorus, and potassium) in the litter removal and addition treatments, but not in the controls.Established decreases in concentrations of soil nutrients in litter removal plots and increased respiration rates in response to nutrient addition suggest that reduced rates of wood decomposition after litter removal were caused by decreased nutrient availability. The effects of litter manipulations differed directionally from a previous short-term decomposition study in the same plots, and reduced rates of bole decomposition in litter removal plots did not emerge until after more than 6 years of decomposition. These differences suggest that litter-mediated effects on nutrient dynamics have complex interactions with decomposition over time

    Analysis of developing laminar flows in circular pipes using a higher-order finite-difference technique

    Get PDF
    A higher-order finite-difference technique is developed to calculate the developing-flow field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-Stokes equations governing the motion of such a flow field are solved by using this new finite-difference scheme. This new technique can increase the accuracy of the finite-difference approximation, while also providing the option of using unevenly spaced clustered nodes for computation such that relatively fine grids can be adopted for regions with large velocity gradients. The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The velocity distribution and the surface pressure drop of the developing flow then are calculated and compared to existing experimental measurements reported in the literature. Computational results obtained are found to be in good agreement with existing experimental correlations and therefore, the reliability of the new technique has been successfully tested
    corecore